Phipps recommends:
Cornelian Cherry Dogwood

Center for Sustainable Landscapes

The future of green has arrived! One of Earth’s greenest buildings is now open for you to visit. Read what people are saying about this inspiring new addition to Phipps and learn how you can take a free docent-led tour and see the facility for yourself.

Center for Sustainable Landscapes

Sustainable architecture and landscape design are taking giant steps forward at Phipps with the new Center for Sustainable Landscapes: an innovative model of sustainability for architects, scientists, planners and anyone interested in greener living. In generating all of its own energy, and treating and reusing all water captured on site, this dynamic education, research and administration facility is expected to meet or exceed the world’s three highest green standards: The Living Building Challenge™, for which Net Zero Energy Building Certification was achieved in February 2014, with Full Certification currently being pursued; Four-Stars Sustainable Sites Initiative™ (SITES™) certification for landscapes, which was awarded in November 2013; and LEED® Platinum, which was awarded in August 2013. Designed and built by Pennsylvanians to operate as efficiently as a flower, this addition is now part of our guest experience.



The Living Building Challenge


CSL is the centerpiece of the $23 million Phase III of a multi-year expansion project underway at Phipps to upgrade and expand facilities, and to emphasize more green and sustainable building practices and operations. During the planning stages of this project, Phipps accepted the Living Building Challenge issued by International Living Future Institute. The Living Building Challenge attempts to raise the bar and define a closer measure of true sustainability in the built environment.

 

Revolutionary Energy Efficiency

  • Pursuing the International Living Future Institute’s Living Building ChallengeTM certification, the highest performance standard for sustainable building practices
  • Achieved Living Building Challenge Net Zero Energy Building Certification in February 2014
  • LEED® Platinum certified with a score of 63 out of 69 points for a new construction under version 2.2; only one other new building has achieved this level of green building distinction
  • In first operational year, achieved with a 68.7% reduction of energy usage versus traditionally-designed buildings per EPA’s Target Finder
  • Designed to reduce capacity requirements for HVAC systems and associated infrastructure (power, pipes, ductwork, pumps, etc.) by 30-40%

Facilitated Integrated Design Process

  • Comprehensive evaluation of end user's operational needs, building's functionality, site, and architectural and engineering systems
  • Bi-monthly charrette workshops between design team and Phipps staff throughout entire two-year design and planning process
  • Video documentation of process for distribution and broadcast
  • Building in Bloom case study book, the first of its kind for a Living Building Challenge project, published by International Living Future Institute in 2013

Passive Solar Design

  • "Outside-In, Passive-First" strategy
  • Overall building energy usage minimized through passive design strategies for typical operation
  • High performance targets: improved envelope, heating, ventilation and cooling, lighting, power, and water conservation
  • Building orientation maximizes northern and southern exposure for 80% daylight autonomy and passive solar controls
  • Light shelves, louvers and overhangs minimize summer cooling loads and contribute to building heating in winter
  • Brise-soleil screens reduce summer cooling loads
  • Atrium is not mechanically heated nor cooled; thermal massing, high-performance operable glazing, solar shading, and phase-change material maintain comfortable temperatures

Robust Building Envelope

  • Provides optimal energy efficiency
  • Building envelope reduces thermal heating losses and solar cooling loads, and maximizes natural daylighting
  • High performance wall and roof insulation reduce winter heat losses and summer heat gains
  • High performance, low-e (low-emissivity) windows provide state-of-the-art solar and thermal control and energy efficiency, while admitting maximum daylight

Geothermal Heating and Cooling

  • A ground-source geothermal HVAC system generates heat and cooling
  • 14 geothermal wells of 510 ft deep boreholes with PEX (crosslinked polyethylene) tubing loops
  • System expected to capture about 70% of its heating and cooling energy from the ground's consistent 55°F (13°C) temperature
  • Geothermal system works in conjunction with the Rooftop Energy Recovery Unit to provide heating, cooling, ventilation, and dehumidification
  • In summer, heat removed from the Heat Pump refrigeration cycle is absorbed by the water circulated in the wells and the cool ground
  • In winter, warmth stored over the course of the summer season is recovered from the wells to heat the building spaces

Rooftop Energy Recovery Unit

  • Uses ground-source geothermal capacity, modulating between 19.4% and 100% outside air based on need
  • Economizer cycle provides "free cooling" using outside air when ambient temperatures are cooler and drier than indoor temperatures, without mechanical refrigeration
  • A desiccant energy recovery wheel pre-cools and dehumidifies outside air to reduce cooling loads of hot moist outside air in the summer; also pre-heats and humidifies incoming cold outside air in winter
  • Maximized outside air and a high performance MERV13 air filter provide superior indoor air quality
  • UV Lighting included to reduce the potential for microbial growth

Desiccant Wheel

  • Desiccant wheel utilizes energy that would otherwise be exhausted to pre-treat temperature and moisture in incoming outside air with minimal energy use and without mechanical refrigeration
  • Enables economizer feature to provide for free cooling and enhanced natural ventilation
  • Geothermal heat pump system is energized when economizer and desiccant wheel cannot maintain comfort conditions due to extremes in outside weather conditions

Building Management System (BMS)

  • Direct Digital Control (DDC) Building Management System monitors, controls, and provides feedback on various systems for optimal energy efficient operations
  • Responds to current conditions, predicts daily ambient temperature and humidity swings based on time of year, and uses past historical weather patterns
  • Notification system alerts occupants if temperature, humidity and air quality conditions are favorable for opening windows, while also locking out mechanical systems
  • Meters and sensors provide building operating profiles and trend data to monitor energy efficiency on an ongoing basis
  • Favorable temperatures and humidity levels trigger a "night purge" to draw cool, dry outside air through building spaces

Solar Photovoltaics (PVs)

  • Renewable energy system generates electricity from the sun
  • Contributes to the net zero energy approach of offsetting 100% of the annual energy consumption of the CSL facility
  • Adjacent facilities building and Special Events Hall roof surfaces provide ideal near-southern orientation for solar PV
  • Building Management System meters and sensors collect and report on renewable energy generation from solar PV
  • Excess generated energy serves upper campus electricity needs

Vertical Axis Wind Turbine

  • Renewable energy system generates electricity from wind
  • Contributes to the net zero energy approach of offsetting 100% of the annual energy consumption of the CSL facility
  • Elevation of the site above Panther Hollow promotes favorable conditions for wind generation
  • Building Management System meters and sensors collect and report on renewable energy generation from vertical axis wind turbine
  • Excess generated energy serves upper campus electricity needs

Natural Ventilation

  • Operable windows provide natural ventilation in administrative, educational, and support spaces
  • Computational Fluid Dynamics study determined optimal window location for natural airflow
  • An expanded upper comfort temperature setpoint of 78°F (25.5°C) instead of a typical 72°F (22°C) thermostat setpoint maximizes the number of hours of natural ventilation
  • Reduces HVAC system fan energy usage
  • Notification system alerts building occupants when conditions are appropriate to open windows

Demand Controlled Ventilation (DCV)

  • Aircuity system monitors temperature, humidity, CO2, TVOC, particulates and CO in occupied spaces, ensuring high quality air delivery through underfloor and ceiling distribution systems
  • Breathing zone air ventilation rates are 55% above ASHRAE Standards 62.1-2004 requirement
  • At less than full building occupancy, the DCV system reduces ventilation air volume, and thus reduces energy required to heat or cool and dehumidify the ventilation air

Minimally Conditioned Atrium

  • 100% passively cooled
  • Passive heating strategies and winter solar collection take advantage of thermal massing in walls, ceilings and floors
  • High-performance operable glazing, solar shading, and phase-change material maintain comfortable temperatures

Daylighting

  • Extensive daylighting amplifies most spaces for 80% daylight autonomy
  • Light shelves and an interior daylight ceiling "cloud" maximize the depth of daylight penetration into the space
  • Ceiling cloud surface and interior finish color schemes provide high reflectance values
  • When natural daylight is insufficient, high performance, energy efficient T-5 fluorescent lighting equipped with daylighting sensors, controls, and dimming ballasts will be engaged
  • Occupancy sensors turn off lights in unoccupied rooms
  • All regularly occupied spaces within 15 feet of operable windows to maximize quality of light and air
  • LED task lights provide additional light if necessary

Sustainable Materials

  • Construction waste diverted from landfills through efficient site design, recycling and reuse
  • Sustainable and innovative materials and finishes applied throughout the building and site
  • Rigorous vetting process guided sourcing materials compliant with Living Building Challenge Red List, which identifies for elimination material components that negatively impact the environment and/or people exposed to them
  • Materials include those that are locally produced, low VOC and formaldehyde free; have high recycled content; and are highly durable with long service lives and ease-of-maintenance
  • Wood salvaged from deconstructed Western Pennsylvania barns for exterior building skin
  • All interior wood furniture reclaimed and/or FSC certified
  • During construction, 96.74% of construction waste was diverted from disposal.

Sustainable Landscape

  • Pilot project for Sustainable Sites Initiative™ (SITES™) certification for landscapes, becoming the first project ever to achieve Four-Stars certification in November 2013
  • 2.9-acre project site was previously a dilapidated brownfield, once used a municipal fueling station, which suffered through decades of environmental devastation
  • Sustainable landscape features over 150 non-invasive, native plant species; view the complete plant list
  • Plants use rain water exclusively for irrigation
  • Walking trail and boardwalk lead through a variety of landscape communities including wetland, rain garden, water's edge, shade garden, lowland hardwood slope, successional slope, oak woodland and upland groves
  • Restores natural landscape function, provides wildlife habitat, and offers educational opportunities

Green Roof

  • Reduces volume of stormwater runoff and pollutants in stormwater runoff
  • Insulates building to reduce HVAC cooling in summer and heating in winter
  • Retains 85% of annual rainfall
  • Extensive green roof design with a 8" soil depth and a variety of plants selected for their medicinal, culinary and biofuel uses
  • Reduces heat island effect
  • Demonstration gardens for residential applications, especially urban landscapes
  • Beautifully landscaped space for an event

Rainwater Harvesting

  • 2.9-acre project site is net zero water, managing all rainfall and treating all sanitary waste on site
  • Site can manage a 10-year storm event (3.3” of rain in 24 hours)
  • A full ½ acre of rooftop runoff – approximately 500,000 gallons – is harvested from upper campus glass roofs and lower site
  • Stored in a 60,000-gallon underground rain tank
  • Rainwater is used for toilet flushing, as well as interior irrigation and maintenance as required
  • Ultralow flow plumbing fixtures include waterless urinals and dual-flush toilets for water conservation
  • Harvested water is reused to offset conservatory irrigation needs, greatly reducing impact on municipal sewage treatment and energy-intensive potable water systems

Lagoon System

  • Captures stormwater runoff from portions of the site and the Tropical Forest Conservatory Roof
  • Replicates natural water treatment process that occurs in wetlands and marshes
  • Water flows through fountains and a lagoon where plants and their symbiotic root microbes absorb organic and mineral nutrients
  • Water is processed to tertiary non-potable standards
  • Post-treatment water that overflows the lagoon flows into underground rain tank storage

Constructed Wetland

  • Treat all sanitary water from CSL and adjacent maintenance building
  • Subsurface flow constructed wetland system
  • 2-stage wetland treatment cell system
  • Sand filtration provides additional treatment of the wetland effluent
  • Ultraviolet process disinfects water to gray water standards
  • Greatly reduces impact on municipal sewage treatment and energy-intensive potable water systems
  • Excess treated sanitary water redirected to Epiphany solar distillation system, which uses solar energy to distill the water to pharmaceutical grade for use in watering orchids

Rain Gardens and Bioswales

  • Five rain gardens serve ecological and aesthetic functions
  • Capture site stormwater to allow natural infiltration
  • Designed with native plants for year round garden interest
  • Demonstration beds for residential application

Permeable Paving

  • Permeable asphalt
  • Allows natural infiltration of site stormwater

Living Building Partners

Organizations

 

Pittsburgh and Pennsylvania Based Design Team

 

Sub-contractors

 

Other Consultants

 

Resources